Formation of macromolecular lignin in ginkgo xylem cell walls as observed by field emission scanning electron microscopy.

نویسندگان

  • Noritsugu Terashima
  • Tatsuya Awano
  • Keiji Takabe
  • Masato Yoshida
چکیده

Formation of macromolecular lignin in ginkgo cell walls. In the lignifying process of xylem cell walls, macromolecular lignin is formed by polymerization of monolignols on the pectic substances, hemicellulose and cellulose microfibrils that have deposited prior to the start of lignification. Observation of lignifying secondary cell walls of ginkgo tracheids by field emission scanning electron microscopy suggested that lignin-hemicellulose complexes are formed as tubular bead-like modules surrounding the cellulose microfibrils (CMFs), and that the complexes finally fill up the space between CMFs. The size of one tubular bead-like module in the middle layer of the secondary wall (S2) was tentatively estimated to be about 16+/-2 nm in length, about 25+/-1 nm in outer diameter, with a wall thickness of 4+/-2 nm; the size of the modules in the outer layer of the secondary wall (S1) was larger and they were thicker-walled than that in the middle layer (S2). Aggregates of large globular modules were observed in the cell corner and compound middle lamella. It was suggested that the structure of non-cellulosic polysaccharides and mode of their association with CMFs may be important factors controlling the module formation and lignin concentration in the different morphological regions of the cell wall.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM

To clarify the role of coniferin in planta, semi-quantitative cellular distribution of coniferin in quick-frozen Ginkgo biloba L. (ginkgo) was visualized by cryo time-of-flight secondary ion mass spectrometry and scanning electron microscopy (cryo-TOF-SIMS/SEM) analysis. The amount and rough distribution of coniferin were confirmed through quantitative chromatography measurement using serial ta...

متن کامل

The Wood Cell Wall at the Ultrastructural Scale – Formation and Topochemical Organization

The macromolecular organization of the secondary wall of the cells from tree xylem is in large part responsible for the mechanical and physiological properties of wood. Modeling secondary walls of wood is difficult because information about their macromolecular architecture at the ultrastructural scale is missing. Numerous microscopic studies have provided views of the lignocellulosic composite...

متن کامل

2D-NMR (HSQC) difference spectra between specifically 13C-enriched and unenriched protolignin of Ginkgo biloba obtained in the solution state of whole cell wall material

In the structural analysis of lignins by 13C-NMR, signal overlap limits definitive assignment and accurate inten­ sity measurement. Selective labeling by 13C-enrichment of a specific carbon in lignin enhances its signal intensity in the spectrum. Further enhancement of the specifically labeled carbons can be realized via difference spectra created from the enriched and unenriched samples. Diffe...

متن کامل

Microscopic Studies on Modified Wall Structure and Lignin Topochemistry in Xylem Fibres of Poplar after Wounding

Information about fine structure following wounding in differentiating xylem tissue is still scarce. This study provides information on cell wall modifications with special emphasis on lignin distribution in xylem fibres of poplar differentiating at the time of wounding. Samples were collected from wounded Populus spp. trees after response periods of up to twenty-three months and processed for ...

متن کامل

Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comptes rendus biologies

دوره 327 9-10  شماره 

صفحات  -

تاریخ انتشار 2004